Addy Osmani partage son workflow de codage avec les modèles de langage (LLM) pour 2026, soulignant l'importance de la planification et de la gestion des tâches. Il recommande de commencer par une spécification détaillée et un plan de projet clair, en collaborant avec l'IA pour définir les exigences et les étapes de mise en œuvre. Ensuite, il suggère de diviser le travail en petites tâches itératives, traitant chaque fonctionnalité ou correction une par une. Cette approche permet de maximiser l'efficacité de l'IA et de maintenir un contrôle humain sur le processus de développement.
L'article de LVLUP.fr compare l'efficacité des modèles de langage (LLM) comme ChatGPT, Gemini et Claude avec une méthode mathématique des années 60 pour générer des plannings hospitaliers. Les LLM échouent avec un taux de réussite de 8% et créent des erreurs, tandis que Google OR-Tools, une solution de programmation par contraintes, génère un planning parfait en moins d'une seconde avec 100% de fiabilité. L'article souligne que pour des contraintes strictes, le déterminisme des solveurs est préférable à la créativité des LLM. Il illustre cela à travers un cas concret de planification pour un service hospitalier de 5 infirmiers, en insistant sur l'importance de modéliser les processus et les contraintes avant d'automatiser.
Tout est dans le titre
Tout est dans le titre
Moralité : "faites confiance à vos développeurs et développeuses."