Jérémy Buget partage son retour d’expérience sur la création d’un chatbot IA spécialisé dans l’inclusion socio-professionnelle, en s’appuyant sur un corpus de documents issus de La communauté de l’inclusion. Le projet utilise une architecture locale avec Ollama (modèle gpt-oss:20b
), un script de crawling en Node.js pour récupérer les fiches d’information, une base PostgreSQL avec l’extension pgvector pour stocker et indexer les embeddings (768 dimensions) générés via Sentence Transformers (nomic-embed-text-v2-moe
). Le chatbot fonctionne en vectorisant les questions utilisateurs, en recherchant les documents pertinents par comparaison vectorielle (similarité cosinus), puis en générant des réponses sourcées via un LLM, le tout encapsulé dans une API FastAPI et une webapp simple. L’objectif était d’explorer l’exploitation de l’IA pour un usage métier précis, en garantissant des réponses fiables et ancrées dans le corpus documentaires. Le code source est disponible sur GitHub. Une démonstration concrète de RAG (Retrieval-Augmented Generation) avec des outils open-source.
25899 shaares